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SUMMARY 

A finite element model to tackle the moving boundary problem of wave run-up on moderately steep 
slopes is developed. The special aspects considered in this study are (1) the modification of shallow 
water equations to accommodate the effect of vertical accelerations and (2) the use of Lagrangian 
acceleration coupled with an element that adapts itself to the moving boundary closely. The pressure 
term in the one-dimensional momentum equation is derived using the Eulerian equation in the vertical 
direction. This takes care of the vertical accelerations which are significant during the motion of a wave 
on moderately steep slopes. The element near the boundary is allowed to change its dimension so that 
the fluid boundary is closely followed. Such a flexible element precludes the need for approximation of 
the variables with regard to the indefinite position of the boundary. This element is split into two when 
its dimension becomes unduly large compared to the unchanging elements. The need for such a 
splitting is shown by an examination of the entries in the global matrix. Results of water profile as a 
wave runs up a structure are given. A brief history of the work on similar problems is outlined. 
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1. INTRODUCTION 

Many problems in fluid mechanics are characterized by moving boundaries. These problems 
present interesting features while applying numerical techniques. The adaptability of the 
finite element method to such problems arises from its capacity to handle curved boundaries 
and variable spatial discretization without complicating the solution procedure. The finite 
difference method has also been successfully applied to those problems. Most of the earlier 
works in connection with moving boundary phenomena used fixed grids. Those approaches 
tackled the moving boundary by alternatively including and excluding finite difference cells 
(or finite elements) at the boundary to deal with the varying domain; for example, Reid and 
B~d ine ,~ ’  Leendertse,” Holtz and Withum,17 NakanoZ6 and Xanthopoulos and Koutita~.~’ 
In recent years, however, continuously deforming finite difference grid or ‘mobile’ elements 
have been incorporated in the solution system; Boris et al.,6 Jamet and Bonnerot,” Lynch 
and Gray,’l Varoglu and Finn37 and Gopalakrishnan and Tung” explain such a procedure. 
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Yeh and Chou4” describe a finite difference model which they refer to as ‘discrete moving 
boundary’ simulation. An interesting discussion on their work by Lynch can be found in 
Reference 22. 

France14 shows that, in certain cases, the fixed element grid is preferable (while effectively 
tackling the moving boundary) as it strikes considerable economy in computation. However, 
the conclusions hold good only for certain problems and their generalization is difficult 
especially for situations where the extent of boundary movement is comparable to that of the 
original domain. 

Review articles on the numerical analysis of moving boundary problems are available in 
References 9, 13, 24 and 33.  Recently Lynch and Gray21 have presented an interesting 
summary of the investigations conducted in the last few years. An overview of moving 
boundary problems is sketched by Boley.” 

In the area of finite element applications there are essentially two approaches: one is to 
use finite elements in both space and time and the other, the ‘semi-discrete’ method, namely 
finite elements in space and finite difference in the time domain. Bonnerot and Jamet4.’ and 
R ~ s h c h a k ~ ~  have adopted the former while the latter is used by Mori?’ Lynch and Gray” 
and Gopalakrishnan and Tung.“ 

Most of the deforming-grid techniques tentatively assume a position for the free surface 
and subsequently correct it by using an iterative procedure until the boundary conditions are 
satisfied to the desired degree of accuracy. However, some of the investigators have 
attempted to follow the boundary closely by using velocity and acceleration vectors of the 
fluid at the b o ~ n d a r y . ’ ~ ~ ~ ” ~ ”  The present paper describes the latter technique but the 
emphasis is on the splitting of the elements near the boundary as they become ‘unwieldy’ and 
on the introduction of the effects of vertical accelerations in the one-dimensional shallow 
water equations, Yeh and ChouM correctly point out the difficulties that may arise as a result 
of the elements at the boundary becoming very large. The present authors anticipated such a 
possibility and have incorporated a simple technique to overcome the difficulties. 

The problem addressed to in this study is the wave run-up on beaches or structures of 
moderately steep slopes, such as 1 on 5. On flatter slopes the vertical accelerations can be 
ignored whereas very steep slopes will necessitate a two-dimensional resolution in the 
vertical plane. 

An important aspect of the wave uprush problem is the wave breaking. In the present 
study only non-breaking waves are considered because the waves are known to climb the 
beach without breaking when the slopes are moderately steep. Attempts to include breaking 
are being made so that the moving boundary numerical model developed here can be applied 
to motion over flat slopes too, as is, indeed, the case when a storm surge rushes inland. 
Heitner and Housner16 and Jamet and Bonnerot,” among others, show how a pseudo- 
viscosity term can be used to tackle such ‘shock’ conditions. Recently, Walton and Christen- 
sen3* have offered a study of friction factors to be used in the motion of storm surge over 
coastal areas. 

The present study uses the Galerkin finite element procedure to evaluate the time 
derivatives of velocity and water level in the varying problem domain of the wave run-up 
problem. Using these derivatives the variables are advanced in time via the Euler predictor- 
corrector scheme. The verification of the numerical model and its engineering significance 
have already been published by the authors;’’ as mentioned earlier, this paper concentrates 
on the governing equations and on the mobile element that is used to tackle the moving 
boundary. However, some of the material in the above mentioned publication is repeated 
here for completeness sake. 
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2. THE PHYSICAL PROBLEM 

Waves approaching a shore are influenced by the bottom topography. Although the wave 
period remains unaltered, the wave height, length and celerity are modified by the varying 
depth of water. The particle velocities and the water levels are accordingly affected. This is 
the wave shoaling problem, 

As the wave moves on the shoaling region it continuously builds up in height and 
eventually breaks when the depth of water is too shallow to support the wave height. This 
gives rise to a bore which then propagates and runs up the beach or structure as the case 
may be. Once a bore is formed the motion is no longer oscillatory. Under certain 
circumstances the wave may reach and run-up the beach or structure without breaking. The 
run-up problem is thus characterized by either a bore or a wave moving on a region not 
occupied by water initially. 

Figure 1 depicts a vertical section through the near shore region and the beach, along the 
x-axis. The forcing function at x = 0 may be one of several kinds depending on whether the 
wave is solitary, cnoidal or sinusoidal. It can also be a bore if the wave breaks prior to 
reaching the plane x = 0. 

Z 

Figure 1. Wave shoaling and run-up 

The objective of the study is to compute the water profile q(x, t )  and the mean velocity 
U(x, t )  for a given beach configuration and forcing function. 

The flow in the region under consideration is assumed to be inviscid and incompressible. 
The density of water p and the atmospheric pressure remain constant. The effect of wind, 
percolation, Coriolis and tide generating forces are neglected. Currents are not present and 
the forcing wave is assumed to enter still water conditions. 

3. THEORY 

The starting point of this investigation is the Eulerian equations of motion in two dimen- 
sions. The Cartesian axes x and z are taken along the horizontal and vertical directions, 
respectively (Figure 1); the corresponding components of velocity are u and w. Pressure is 
represented by p. Thus 

u = u(x, z,  t )  

w = w(x, 2, t )  

P = P ( X ,  2, t )  

in which t is time. When gravity is the only body force considered, the following momentum 
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equations result: au au au 1 ap 
a t  ax a2 p a x  

aw a w  aw l a p  - + u - + w - =  ----g 
at  ax az p a 2  

- + U - + W - =  --- 

where g is the acceleration due to gravity. 
The continuity equation is: 

au aw -+-=o 
ax a2 

(3)  

When developing the shallow water equations, the term (l/p)(ap/ax) is replaced by g(dq/ax) 
based on the hydrostatic pressure assumption. However, when vertical accelerations can be 
considerable such an assumption will not hold good. The problem of wave shoaling and 
run-up usually involves considerable vertical accelerations. An attempt is made here to 
approximately evaluate the vertical accelerations in terms of the one-dimensional velocity U, 
water level q and the bottom slope ahlax. With the introduction of vertical accelerations the 
one-dimensional momentum equation can be considered as a 'quasi two-dimensional' 
equation. 

The terms which account for vertical accelerations in the momentum equation are derived 
from considerations of pressure variation on a vertical section. An expression for this 
variation can be obtained from the momentum equation for the z-direction, equation (2). 
Once this variation is established the corresponding effect can be introduced in the term 
-( l/p)(dp/dx) of the momentum equation for the x-direction, equation (1). Thus, we obtain 
an equation for the x-direction in which the effects of vertical accelerations are included. The 
following paragraphs explain the steps involved in arriving at the modified 1-D (or the quasi 
2-D) equation. In the initial stages this development follows that of Peregrine.30 

The x-component of the particle velocity can be represented by a mean and fluctuating 
terms as 

where 
(4) u(x, 2, t) = U(x, t ) +  u*(x, 2, t )  

u*dz=O and U(x,t)=- 1- u(x ,z ,  t)dz I: h + ?  -h 

Based on this relationship, equation (1) becomes 

At this stage it is assumed that u* is negligible compared to U, i.e. the horizontal velocity is 
assumed to be uniform over a vertical section. This assumption has been found to introduce 
negligible errors in most shallow water motions. Expanding the terms in equation ( 5 )  and ~- 

neglecting small quantities gives 
au au l a p  - + J T - =  _ _ _  

I -  

a t  ax p a x  
which, when integrated over z yields 

the vertically-averaged horizontal momentum equation. 
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Similarly, the vertical momentum equation (2) can be approximated by 

aw aw aw z a p  
a t  ax az paz 
-+u-+ w-=---- 

and the continuity equation (3)  by 

Since the right-hand side of equation (9) is only a function of x and t, it follows that in this 
approximation w is at most a linear function of z. Thus, using the boundary condition that 

equation (9) can be integrated to give 

as an approximation to the true vertical velocity. Based on this, the various terms on the 
left-hand side of the approximate vertical momentum equation (8) can be explicitly 
evaluated, giving 

I 
and equation (9). 

Thus, the left hand side of equation (8) can be expressed as a function { of U and its time 
and space derivatives, h and its space derivatives and z ,  i.e. equation (8) can now be written 
as 

Integrating equation (12) with regard to z yields 

P 
P z 

-- = g ( z  - q) + jq {(x, Z, t) dZ 

where p = 0 at z = q has been utilized. Differentiating equation (13) with respect to x gives 

which can now be inserted into the horizontal momentum equation (7) to give 

Comparing equation (15) with the well known shallow water momentum equation, it is seen 
that the (approximate) effect of vertical motion comes in through the terms on the right-hand 
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side of equation (15). Since U and h are not functions of z ,  these terms are easily evaluated 

explicitly. For example, the term - (see equation (ll)), which forms one of the terms (F,)  in 
the function f; gives: 

aW 

at 

ax at ax 

Equation (15) is then the 1-D momentum equation which accounts for vertical accelera- 
tions and hence may be called the 'quasi 2-D equation'. It is evident from the above 
development of the quasi 2-D momentum equation that the consideration of vertical 
accelerations does not affect the form of the 1-D continuity equation, i.e. equation (3) can be 
averaged over z to arrive at the well known exact shallow water continuity equation, namely 

a 
at ax 
3+- [ U(q + h)l = 0 

(Note: The use of both the exact and approximate (e.g. equation (10)) continuity equations 
in the derivation is consistent with the assumption that u*<< U.) Thus, equations (15) and 
(17) constitute the set of equations to be used for the shoaling and run-up problems in the 
quasi 2-D system. Effects of bottom friction can now be introduced via concepts of drag. 
Details of this are given 'in reference 15. 

Initial and boundary conditions 

Still water conditions are assumed at the initial instant t = 0. Therefore, 

The point x = 0 is referred to as the upstream point in this study. The tip of the moving front 
on the beach is the downstream point. The upstream boundary condition is provided by the 
forcing function as explained in the previous section. From the expression for q describing 
such functions the rate of change of water level at the upstream point can be obtained. At 
the downstream side the value of q depends on the velocity of the tip of moving water and 
the beach slope. The imposition of the downstream boundary condition is associated with the 
moving boundary aspect of the problem and will be explained in detail in a later section. In 
short, it is noted that the upstream and downstream boundary conditions are supplied 
through the values of and U, respectively. The latter requires considerations of the 
Lagrangian acceleration and this forms the essential aspect of handling the moving boundary 
part of the problem. 

The number of boundary conditions for a given problem depends on the number of 
equations in the mathematical system governing the physical situation and on the order of 
differential equations in that system. This is the case for problems of unchanging domain. 
However, for moving boundary problems, additional conditions are to be specified in order 
to follow the boundary as it moves. These additional conditions are not used to solve the 
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differential equations in the system but to prescribe the value of the variable on the 
boundary consistent with the motion. Such conditions may be termed consistency conditions. 
The number of consistency conditions will be equal to the number of directions in which the 
boundary is moving. 

In the present model, the unknowns are two in number, namely U and q, and the 
corresponding mathematical system consists of two equations (15) and (17)). These equations 
are of the first order. Thus, we need two boundary conditions, namely, one on U and one on 
q, to solve the system. There are cases in which the one dimensional system of equations 
have been solved using q at both the upstream and downstream points even though one of 
the two equations is predominantly with regard to U. This approach is admissible but the 
accuracy of the results depends on how strongly the two equations are coupled. However, in 
the present study one condition on q and one on U are used. Thus, the problem is 
mathematically ‘well posed’. 

The number of ‘consistency conditions’ in order to follow the moving boundary (in the 
present one-dimensional system) is 1 because the boundary expands or contracts (along the 
x-axis) at the downstream side only. This consistency condition is supplied through q at the 
downstream point as explained in a later section. 

4. THE NUMERICAL MODEL 

In order to solve the governing partial differential equations numerically, the Galerkin finite 
element procedure is adopted. Several works published in recent years exemplify the 
usefulness and power of this approach in fluid flow analysis. In general, a space-time 
dependent problem requires discretization both in space and time. Such a combined 
discretization leads to large implicit systems of equations. It is known that in the case of 
hyperbolic problems the implicit finite element systems are cumbersome to handle.I2 In the 
present study, the finite element procedure is adopted for spatial resolution only. This results 
in a solution system that yields the time derivatives of the variables. The time integration is 
performed using the Euler predictor-corrector scheme. 

The variables U and q being one-dimensional in the current study, the discretization is 
with line elements, as shown in Fig. 2. It is seen that the whole domain is not discretized at 
the beginning because the equations are applicable only up to the point to which the water 
body extends. The manner of keeping up with the moving boundary and having the last node 
E always at the tip of water form the second salient feature of the present model, the first 
being the non-hydrostatic approximation. 

X ’ O  

I I 
I I 
I I 
I I k- PROBLEM DOMAIN - - ---q 

Figure 2. Spatial discretization 
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Choice of shape function 

The Hermitian cubic shape function is eminently suited to the situation analysed herein. 
Moreover, being a cubic polynomial it can adapt itself to the ‘corrugations’ on the water 
surface that occur as water starts moving up the beach. These corrugations are actually the 
mild shocks that travel upstream from the front, as the leading edge of water traverses a dry 
bottom. The present study considers only non-breaking waves, but mild shocks are still 
possible and should be accommodated. 

While following the moving tip of the water front, it is necessary to use the Lagrangian 
acceleration of that point. This requires the spatial gradient of U. One of the advantages of 
using the Hermitian cubic shape function is that such a gradient is obtained as part of the 
solution, precluding thereby the need to compute it explicitly. Moreover, the inclusion of 
vertical acceleration effects necessitate dealing with spatial derivatives through third order 
which is facilitated using cubic shape functions. 

The solution system 

two matrix equations as shown below: 
Based on the above numerical technique, the governing partial differential equations issue 

where the dot notation stands for the time derivative. Solution of these equations produces 
the time derivatives of U and q at the nodes. The time integration scheme to obtain the time 
history of the variables is explained below. 

5 .  TIME INTEGRATION 

In order to reduce the error due to the use of constant rates of change of q and U within the 
time step, an iterative procedure is necessary. This is introduced in the time integration via 
the predictor-corrector technique. The simplest of such techniques (the Euler predictor- 
corrector) is the one that takes into account the rates of change at two successive instants. 
The predicted value for the next instant considers the gradient at the present instant. This 
enables us to compute the approximate gradient at the next instant. The corrected value is 
then obtained using the mean of the two gradients mentioned above. The iterations are 
repeated until two successive corrected values for the next instant agree within a limit. 
Higher order predictor-correctors, such as the Adams-Moulton method, consider the rates 
of change at more than two instants. However, the convergence rates will be slower in 
general. In the problem of run-up the number of time steps to be executed can be very large. 
Therefore, in order to strike a compromise between high accuracy and rapid convergence, 
the Euler predictor-corrector was chosen for this study. 

The moviizg boundary aspect 

In many hydrodynamic phenomena the problem domain is such that the boundaries or 
control sections do not change with time; for example, problems involving flood routing. If 
the free surface is considered as a boundary, then flood routing will also come under moving 
boundary problems. But in most cases of flood routing, one-dimensional models have been 
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Downstream I I I I Upstream 
,section 
IJ Pro%le at t+At 
I 
I- 

Figure 3. The moving downstream section 

adopted and those imply that the free surface is implicitly included in the continuity 
equation. Hence, in the one-dimensional approaches the free surface is not considered a 
boundary of the problem domain. In fact, being one-dimensional the variables depend only 
on x and only in this direction need the boundaries be specified. The flood routing problem 
has thus an upstream and downstream boundary which remain fixed in time. The wave 
shoaling problem is very similar to flood routing and hence, in the one-dimensional system, it 
too is not a moving boundary problem. However, the wave run-up problem, even in the 
one-dimensional approximation, differs from flood routing and shoaling problems in that it 
has a moving problem domain. 

The wave run-up problem has an upstream control section, i.e. the vertical plane x = 0 
(Figure 3)  and a downstream control section at the tip of the wedge of water on the sloping 
beach. The upstream section remains unchanged in time. However, the downstream section 
must move with the water front because the tip of the moving front changes its position on 
the beach with time. This is what characterizes wave run-up as a moving boundary problem. 

Let it be assumed that at time t the wave has reached the shore line and is about to climb 
the beach as in Figure 4. The last element (or the end element) denoted as AB has a length 1 

SWL A !  

Figure 4. Water profile and end-element at time t .  

at time t. At time ( t + A t )  the tip of water has moved up (Figure 5).  We let the last node 
move with the tip and take up the position B, at ( t i  At) .  The end-element length now is 11, 
as shown in Figure 5 .  In order to determine 11, we should consider the Lagrangian motion of 
water at the tip of the moving front. This is so because at this point we are moving with the 
particle. The distance s which is equal to E ,  - 1 is given by 

s = Ue(t ) (At )+&z(At)2  
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Figure 5 .  Water profile and end-element at time r + 4r 

where UJt)  is the velocity of the tip at time t and a is the Lagrangian acceleration, assumed 
constant in the interval At; i.e. the sum of local and convective accelerations. Equivalently, 
S = U, and U, = a, and the above expression for s is a second order accurate Taylor series 
approximation. The water level q at the tip of the front is (s tan a )  where a is the angle of 
the beach slope to the horizontal plane. However, a more accurate and numerically stable 
way of determining U and q at the tip, adopted in the present study, is explained below. 

In the above approach, the end element has a length which is time dependent. Moreover, 
its length changes as the waves moves up or down the beach. If the end element has a length 
much larger than the elements prior to it then the global coefficient matrix will tend towards 
becoming ill-conditioned and the approximation will be poor in this element. In order to 
avoid this we split the end element into two elements when its length exceeds the ‘regular’ 
element length by a certain amount, say 20 per cent. This means that we are introducing a 
new node between the last two nodes. The values of the variable at the new node can be 
easily obtained by using the shape functions and the position of the new node between the 
last two nodes. This procedure is illustrated using Figures 6-8. 

CD End- Element 

Figure 6. Position at time r 

A B 

Figure 7. Position at time t + 4r 
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/ 
Figure 8. Element splitting at time t +At  

After this step of splitting the end-element CD into the two elements CD and DE, the 
element CD remains constant in length and DE becomes the end-element with the node E 
now following the tip. By such a procedure we are able to have mobile elements at the end 
while avoiding the possibility of the coefficient matrix becoming ill-conditioned. 

Determination of U and q at the moving tip 

What dictates the flow on the downstream side is the ground slope and the velocity at the 
tip of the moving water. Let the velocity of water at the tip be U, and the water level there 
be q,. The continuum boundary conditions at the tip, q = h, are given by 

and 

-= dXe u, 
dt  

where X ,  is the location of the tip. These boundary conditions are similar to those adopted 
by Lynch and Gray21 but the Lagrangian motion of the tip is obtained in a different manner. 
From Figure 9 it is seen that the tip travels a horizontal distance s in the interval At. The 
mean acceleration of the tip in the period between t and t+At is 

Hence, 
a, = [a,( t) + a,( t + At)]/:! 

s = U,At + a,(At)2$ 

From the geometry of Figure 9 it follows that 

qe(t+At)=qe(t)+s t a n a  (20) 

Profi le a t  t + A t  

Figure 9. Downstream conditions at the instants t and t + A t  
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However, it is seen above that in the computation of qe(t+At), U,(t+At) is involved and 
that U,(t+At) is unknown until all quantities for the instant (t+At) have been computed. 
This difficulty is overcome in the process of applying the Euler predictor-corrector as 
detailed before. The following lines explain the steps involved in arriving at qe(t+At) and 
U,(t + At). 

The value of the velocity U,(t+At) can be predicted by considering the Lagrangian 
acceleration of the tip. Let this acceleration be a at the instant t. Therefore, 

U,(t + At) = U,(t) + aAt (21) 

But a itself is a function of time. Hence, during the predictor-corrector operation adopted 
for moving ahead in time, the repeated iterations take the mean of the total accelerations 
a( t )  and a(t+At) into account. The following steps explain the relationships during the 
iterations of predictor (superscript p) and corrector (superscript c): 

Predictor operations. 

UE(t+At) = U,(t)+a(t)At 

which is an approximation to the continuum equation 

dU, aU, aU, + U,- 
dt at ax 

-=- 

the acceleration following the moving tip. 

sp= Ue(t)At+a(t)(At)2$ 

q:(t+At)=qe(t)+sP t a n a  

Using the above value of U,(t+At) as the downstream boundary condition and qe(t+At) as 
the consistency condition all quantities for the instant ( t  + At) are computed. 

Corrector operations. 
a c(t + At) 

a(t+At)= + e ( t + A t )  
a t  

a e ( t  + At) 
ax 

Uz(t +At)  = U,(t) + a,At 

sc = U,(t)At + a,(At)2$ 

qz(t+At)=qe(t)+sCtana 

The iterations are continued till two successive values of Ve(t + A t )  differ only by a pre-set 
tolerance. Thus, we see that due consideration is given to the continuous variation of velocity 
and acceleration at the tip during the interval At. 

Introduction of boundary conditions in the numerical scheme 

The solution system for is solved after introducing the forcing upstream boundary 
condition (namely 4 at node 1) as below: (let il be equal to q and C2(1) the first column of 
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C2; c2 represents C z  minus the first column and first row): 

At the upstream point the Galerkin equation for velocity is retained. As the downstream 
section is one of open boundary, it is inappropriate to prescribe the Eulerian time derivative 
of U. Hence, what is done is to use U, (as explained above in the earlier part of Section 5) in 
the computation of the right hand side (i.e. {b,})  while solving for U from 

C,{ri> = Cbll 
This means that the downstream boundary condition forces itself not through the time 
derivative of U but through prescribing U itself at that point. Thus the Galerkin equation for 
U is retained also at the downstream point. 

6. COMPUTATION AND RESULTS 

Numerical experiments were run using the model developed above. Several combinations of 
forcing function, bottom topography and discretizations were introduced to study the 
applicability. The reader is referred to Reference 15 for details of the entire set of runs. 
Here, the one regarding the run-up of an oscillatory incident wave is presented. The 
following parameters refer to the physical and numerical aspects of this run. 

Still water depth = 10.0 ft; Beach slope = 0.25 
Height of incident wave = 6-0 ft; wave period = 12 s 
Element length = 10.0 ft; Time step = 0-06 s 

Figures 10(a)-(n) depict the water profile at intervals of 0.6s. They bring out two 
interesting aspects among others; one is that, just before running up the slope a steep front is 
formed and the other is that mild shocks run upstream as the water begins to flow on the dry 
area. The real world situation confirms these. 

As mentioned under the moving boundary aspect the size of the end-element is time 
dependent. Hence, the element-matrix of this element changes with time. The corresponding 
portion in the global matrix is thus affected at each time step while the rest of the global 
matrix remains the same. In order to avoid forming the unchanging portion of the global 
matrix at each time step, a coupling and decoupling method was adopted for the end- 
element matrix with regard to the global matrix; thus only the time dependent part in the 
global matrix is computed at each time step. The system of linear algebraic equations is 
solved using a band algorithm based on Gaussian elimination. Details of this algorithm can 
be found in Gopalakri~hnan.'~" In the present problem the number of iterations under the 
Euler predictor-corrector scheme varied between 3 and 5. 

Change of end-element length 

The moving boundary is closely followed by letting the node at the front move with the tip 
of water. In this process the end-element length keeps increasing. Table I gives the element 
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Figure 10. Run-up of oscillatory incident wave 
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Figure 10 (contd) 
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Figure 20 (contd) 
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Figure 10 (contd) 
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lengths at every time step. As the end-element is split, the number of elements increases by 
one. It is seen that when the end-element length exceeds 1.2 times the regular length it is 
split such that the front element is 3 f t  long and the one prior to it is 3 f t  less than the 
end-element length just before splitting. It is also observed that the end-element shrinks first 
and then begins to lengthen. This indicates that the tip of the water wedge first comes down 
before going up the slope. Such a preliminary run-down before the phenomenon of uprush is 
actually observed in physical experiments. Entries in Table I relate to the following data: 

Forcing function-Solitary wave of height 3 ft 
Depth of water = 9 ft; Slope of beach = 0.3 
Regular element length = 10 ft; Time step = 0-06 s 
Initial number of elements = 3. 
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Table I. Element lengths (ft) at each time step 

Element number 
Time 
(4 1 2 3 4 5 6 

0.06 
0.12 
0.18 
0.24 
0-30 
0.36 
0.42 
0.48 
0.54 
0.60 
0.66 
0.72 
0-78 
0.84 
0.90 
0.96 
1.02 
1.08 
1.14 
1.20 
1.26 
1.32 
1.38 
1.44 
1.50 
1.56 
1.62 
1.68 
1.74 
1.80 
1-86 
1.92 
1-98 
2.04 
2.10 
2.16 
2.22 
2-28 
2.34 
2.40 
2.46 
2.52 
2.58 
2.64 
2.70 
2.76 
2.82 
2.88 
2.94 

10.000 
10~000 
10~000 
10.000 
10~000 
10~000 
10~000 
10~000 
10~000 
10*000 
10-000 
10~000 
10~000 
10*000 
10~000 
10~000 
10~000 
10~000 
10~000 
10~000 
10~000 
10~000 
10~000 
10*000 
10~000 
10*000 
10.000 
10~000 
10~000 
10.000 
10.000 
10~000 
10~000 
10-000 
10~000 
10.000 
10~000 
10~000 
10~000 
10*000 
10-000 
10-000 
10.000 
10~000 
10~000 
10~000 
10~000 
10.000 
10~000 

10~000 
10~000 
10~000 
10~000 
10~000 
10~000 
10~000 
10~000 
10.000 
10~000 
10-000 
10~000 
10~000 
10~000 
10*000 
3 0.000 
10-000 
10~000 
10-000 
10~000 
10~000 
10~000 
10*000 
10.000 
10~000 
10~000 
10~000 
10*000 
10~000 
10.000 
10*000 
10~000 
10~000 
10.000 
10~000 
10~000 
10~000 
10~000 
10~000 
10~000 
10.000 
10~000 
10~000 
10~000 
10~000 
10~000 
10.000 
10~000 
10-000 

9.999 
9.993 
9.986 
9.978 
9-971 
9.966 
9.966 
9.970 
9.974 
9.973 
9-958 
9.921 
9.857 
9.767 
9-665 
9.651 
9.565 
9.681 
9.973 

10.438 
11~051 
11,775 
9.575 
9.575 
9.575 
9.575 
9.575 
9.575 
9.575 
9.575 
9.575 
9.575 
9.575 
9.575 
9.575 
9.575 
9.575 
9.575 
9.575 
9.575 
9.575 
9.575 
9.575 
9.575 
9.575 
9.575 
9.575 
9.575 
9.575 

3.000 
3.854 
4.740 
5.647 
6.571 
7.505 
8.443 
9.381 

10.316 
11.246 
9.169 
9.169 
9.169 
9.169 
9.169 
9.169 
9.169 
9.169 
9.169 
9.169 
9.169 
9,169 
9.169 
9.169 
9.169 
9.169 
9-169 

3.000 
3.913 
4.813 
5.699 
6.569 
7-421 
8.256 
9.071 
9.867 

10-644 
11-399 
9.134 3.000 
9.134 3.713 
9434 4.402 
9.134 5.068 
9.134 5.709 
9.134 6.326 
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Comparison of global matrices with and without end-element splitting 

The entries in the global matrix corresponding to the two elements at the end are given in 
Figures 11 and 12 (C, matrix). These relate to the field conditions of the oscillatory wave 
mentioned before. Figure 11 corresponds to the values when the end-element splitting was 
adopted. Figure 12 gives the entries when such a splitting was not adopted and the 
end-element was allowed to continuously increase in length consistent with the moving tip. 
Comparing these two figures, it can be concluded that the end-element splitting retains the 
matrix in a balanced form and hence is necessary. The error arising out of not splitting the 
end element for prolonged periods is numerically shown by Gopalakrishnan. 

One of the questions that would arise is regarding the significance of the vertical 
accelerations; in other words, do they contribute substantially to justify their inclusion? In 
order to investigate this issue, numerical runs were made, alternately including and excluding 
vertical accelerations for the run-up of waves with two different steepnesses and two 
different bottom slopes. The results indicated certain interesting features. On comparing the 

6.80 0.01 
0.01 14-43 
1.18 2.60 

~ 2 . 6 0  -5.54 
0.00 

--- --. --. --  .. -. -- - -__ --. ~ 2 . 6 0  -5.54 
0.00 

--- --. --. --  .. -. -- - -__ ---. 

--  *. - -_  --. --- -- --. 
1-18 -2.60 - _  2.60 -5.54 0.00 ---- --- 
5.71 -2.14 0.80 -1.20'": 

-2.14 9.48 1.20 -1.73 i 
0.80 1.20 2.31 -1.82 

-1.20 -1.73 -1.82 2.26 i 

(b) 
Figure 11. Matrix elements with end-element splitting: (a) t = 1.0 s;  (b) t = 6.0 s 

- - -_ -. --- -_  -- -- - - -  - -  - * -  - -  --- 
7.43 0.00 1.28 -3.10 
0.00 18.80 3.10 -7.20 0.00 -- 
1.28 3.10 19.83 83.85 5.57 - 5 8. is'-. 

-3.10 -7.20 83.85 775-34 56.28 -586.89 
0.00 5.57 58.28 16.11 -88.56 

-58.28 -586.89 -88.56 765.94 --. -_ --._ -. - _  -- -- -. --- -. -- 

---_~___________________________________--------- - - - - - - - - - - - - - -  
Figure 12. Matrix elements without end-element splitting: t = 6.0 s 
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run-up values with the experimental values presented by H~r ikawa’~“  it is seen that the 
model with the vertical accelerations produced correct results while the one without them 
indicated a SO per cent higher run-up. Another aspect is that the model with the acceleration 
effects predicted the inception of the wave breaking systematically whereas the other model 
did not do so. In fact, such a lapse seems to be serious because in one numerical run (with 
the vertical accelerations not included) the run-up was 2.5 times the corresponding experi- 
mental value! 

CONCLUSION 

A numerical model based on the Galerkin finite element procedure has been developed to 
resolve a moving boundary coastal problem. The present study also includes a way to 
introduce the effects of vertical accelerations in the one-dimensional momentum equation. 
The model and the theory combine to work well and (as indicated in Reference 15) 
reproduce the physical phenomenon of wave run-up with a high degree of accuracy. 

The present model can handle only situations where waves do not break. It has been 
observed in nature that waves do climb without breaking if the slope of the beach is 
moderately or very steep-such as 1 on S or steeper. However, for very steep slopes the 
governing equations developed in this study become inapplicable because some of the 
assumptions made therein no longer hold true. Under such circumstances a 2-D model is 
warranted. The same concepts of tackling the moving boundary as indicated in this study can 
be used for the 2-D model except that the Lagrangian accelerations should be considered 
now for all nodes on the free surface. Preliminary results of this have been obtained and 
further work will be published separately. 
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